Search results for "Superconformal algebra"
showing 4 items of 4 documents
The enveloping algebra of the Lie superalgebra osp(1,2)
1990
International audience
BASIC TWIST QUANTIZATION OF osp(1|2) AND κ-DEFORMATION OF D = 1 SUPERCONFORMAL MECHANICS
2003
The twisting function describing a nonstandard (super-Jordanian) quantum deformation of $osp(1|2)$ is given in explicite closed form. The quantum coproducts and universal R-matrix are presented. The non-uniqueness of the twisting function as well as two real forms of the deformed $osp(1|2)$ superalgebras are considered. One real quantum $osp(1|2)$ superalgebra is interpreted as describing the $\kappa$-deformation of D=1, N=1 superconformal algebra, which can be applied as a symmetry algebra of N=1 superconformal mechanics.
Galilean Superconformal Symmetries
2009
We consider the non-relativistic c -> \infty contraction limit of the (N=2k)- extended D=4 superconformal algebra su(2,2;N), introducing in this way the non-relativistic (N=2k)-extended Galilean superconformal algebra. Such a Galilean superconformal algebra has the same number of generators as su(2,2|2k). The usp(2k) algebra describes the non-relativistic internal symmetries, and the generators from the coset u(2k)/usp(2k) become central charges after contraction.
Kac-Moody group representations and generalization of the Sugawara construction of the Virasoro algebra
1988
We discuss the dynamical structure of the semidirect product of the Virasoro and affine Kac-Moody groups within the framework of a group quantization formalism. This formalism provides a realization of the Virasoro algebra acting on Kac-Moody Fock states which generalizes the Sugawara construction. We also give an explicit construction of the standard Kac-Moody group representations associated with strings on SU(2) and recover, in particular, the ‘renormalization’ β factor of L(z)